miércoles, 26 de mayo de 2010

temaa 7!

1.- Define las siguientes propiedades de los materiales:



- Conductividad térmica
La conductividad térmica es una propiedad física de los materiales que mide la capacidad de conducción de calor. En otras palabras la conductividad térmica es también la capacidad de una sustancia de transferir la energía cinética de sus moléculas a otras moléculas adyacentes o a substancias con las que está en contacto. En el Sistema Internacional de Unidades la conductividad térmica se mide en W/(K·m). También se lo expresa en J/(s·°C·m)






- Tenacidad
la tenacidad es la energía total que absorbe un material antes de alcanzar la rotura, por acumulación de dislocaciones. En mineralogía la tenacidad es la resistencia que opone un mineral u otro material a ser roto, molido, doblado, desgarrado o suprimido, siendo una medida de su cohesión.




- Torsión
La resistencia a la torsión es la energía requerida para torcer una probeta de una geometría con la resistencia a la tracción.




- Plasticidad

La plasticidad es la propiedad mecánica de un material, biológico o de otro tipo, de deformarse permanentemente e irreversiblemente cuando se encuentra sometido a tensiones por encima de su rango elástico, es decir, por encima de su límite elástico.
En los metales, la plasticidad se explica en términos de desplazamientos irreversibles de dislocaciones

.2.- El acero ¿es un compuesto o una aleación?
El acero es una aleación de hierro y carbono, donde el carbono no supera el 2,1% en peso[1] de la composición de la aleación, alcanzando normalmente porcentajes entre el 0,2% y el 0,3%. Porcentajes mayores que el 2,0% de carbono dan lugar a las fundiciones, aleaciones que al ser quebradizas y no poderse forjar —a diferencia de los aceros—, se moldean.




3.- ¿Qué es un biomaterial?

Mientras que una definición para los biomateriales ha sido difícil de formular, una definición extensamente aceptada para los biomateriales es ésa:

“Un biomaterial es cualquier material, natural o artificial, que abarca entero o la parte de una estructura viva o de un dispositivo biomédico que se realice, los auguments, o substituye una función natural”.[la citación necesitó]

Un biomaterial es esencialmente un material que se utiliza y se adapta para un uso médico. Los biomateriales pueden tener una función benigna, tal como ser utilizado para a válvula del corazón, o puede ser bioactive y utilizado para un propósito más interactivo tal como hydroxy-apatita cubrió implantes de la cadera (la cadera del Furlong, por instrumentación Ltd, Sheffield de Joint Replacement es un tal ejemplo - tales implantes son duraderos hacia arriba de veinte años). Los biomateriales son diarios también usado en usos, cirugía, y entrega dentales de la droga (una construcción con los productos farmacéuticos impregnados se puede poner en el cuerpo, que permite el lanzamiento prolongado de una droga sobre un período del tiempo extendido).




4.- Los polímeros son materiales cada vez más frecuentes en nuestra vida cotidiana, pero ¿sabrías explicar qué es un polímero?
Son materiales de origen tanto natural como sintético, formados por moléculas de gran tamaño, conocidas como macromoléculas. Polímeros de origen natural son, por ejemplo, la celulosa, el caucho natural y las proteinas. Los poliésteres, poliamidas, poliacrilatos, poliuretanos,..etc, son familias o grupos de polímeros sintéticos con una composición química similar dentro de cada grupo. Macromolécula y polímero son términos equivalentes, el primero se utiliza para referirnos a propiedades relativas a la escala molecular mientras que el segundo se emplea más para referirnos al material y sus propiedades macroscópicas

5.- ¿Todos los plásticos son polímeros?

Hay que señalar todo los plasticos son polimeros pero no todos los polimeros son plasticos.

6.- Tipos de polímeros.

  • Polímeros naturales. Existen en la naturaleza muchos polímeros y las biomoléculas que forman los seres vivos son macromoléculas poliméricas. Por ejemplo, las proteínas, los ácidos nucleicos, los polisacáridos (como la celulosa y la quitina), el hule o caucho natural, la lignina, etc.
  • Polímeros semisintéticos. Se obtienen por transformación de polímeros naturales. Por ejemplo, la nitrocelulosa, el caucho vulcanizado, etc.
  • Polímeros sintéticos. Muchos polímeros se obtienen industrialmente a partir de los monómeros. Por ejemplo, el nylon, el poliestireno, el cloruro de polivinilo (PVC), el polietileno, etc.


7.- ¿Qué ventajas tienen los siguientes materiales?


a) Composites

Los composites o resinas compuestas son materiales sintéticos que están mezclados heterogéneamente y que forman un compuesto, como su nombre indica, están compuestos por moléculas de elementos variados. Estos componentes pueden ser de dos tipos: los de cohesión y los de refuerzo. Los componentes de cohesión envuelven y unen los componentes de refuerzo (o simplemente refuerzos) manteniendo la rigidez y la posición de éstos. Los refuerzos confieren unas propiedades físicas al conjunto tal que mejoran las propiedades de cohesión y rigidez. Así, esta combinación de materiales le da al compuesto unas propiedades mecánicas notablemente superiores a las materias primas del que procede. Tales moléculas suelen formar estructuras muy resistentes y livianas, por este motivo se utilizan desde mediados del siglo XX en los más variados campos: aeronáutica, fabricación de prótesis, astro y cosmonáutica, ingeniería naval, ingeniería civil, artículos de campismo, etc

El adobe, formado por arcilla y paja, es el composite más antiguo que conocemos y que hasta hace poco era utilizado en la construcción de viviendas.

b) Biomateriales
  • Los biomateriales de naturaleza polimérica (teflón, nylon, dacron, siliconas) tienen la ventaja de ser elásticos, baja densidad y fáciles de fabricar. Su principal desventaja es la baja resistencia mecánica y su degradación con el tiempo.
  • Algunos metales, como los aceros 316, 316 LS y de bajo contenido de carbono, aleacciones de titanio, son frecuentemente usados como biomateriales. Sus principales ventajas son la resistencia al impacto y al desgaste. Sin embargo son de baja biocompatibilidad, factibles de ser corroídos en medios fisiológicos, alta densidad, y dificultad para lograr la conexión con tejidos conectivos suaves.
  • Los materiales cerámicos, como el óxido de aluminio, aluminatos de calcio, óxidos de titanio y algunos carbonos son usados como biomateriales. Sus ventajas son la buena biocompatibilidad, resistencia a la corrosión e inercia química. Sin embargo presentan problemas ante esfuerzos de alto impacto, son inelásticos, poseen alta densidad (algunos) y son de difícil producción.
Los Nuevos Materiales, como los nanocompositos, las cerámicas metal-carbono o metal-nitrógeno, y las alecciones intermetálicas complejas resultan la mayor promesa en cuanto a biocompatibilidad se refiere. Poseen la mayor parte de las ventajas anteriormente mencionadas, siendo actualmente su mayor desventaja la dificultad y costo de síntesis

c) Superconductores
Un superconductor tiene dos características esenciales. Por debajo de una temperatura crítica característica (Tc), dependiente de la naturaleza y estructura del material, los superconductores exhiben resistencia cero al flujo de electricidad y pueden expulsar el flujo magnético de su interior, dando lugar al fenómeno de levitación magnética.

d) Nanocompuestos de carbono
El tipo general de materiales orgánicos / inorgánicos de nanocompuestos es una área de investigación de rápido crecimiento. Esfuerzos significativos se centran en la habilidad de obtener el control de las estructuras a nanoescala vía aproximaciones sintéticas innovadoras. Las propiedades de los materiales nanocompuestos dependen no solo de las propiedades de sus patrones individuales sino también de su morfología y de sus características interfaciales.

8.- ¿Qué es la nanotecnología?

La nanotecnología es un campo de las ciencias aplicadas ( dedicado al control y manipulación de la materia a una escala menor que un micrómetro, es decir, a nivel de átomos y moléculasnanomateriales). Lo más habitual es que tal manipulación se produzca en un rango de entre uno y cien nanómetros.

9.- ¿A qué llamamos fullerenos?
Los fullerenos o fulerenos son la tercera forma más estable del carbono, tras el diamante y el grafito. El primer fullereno se descubrió en 1985 y se han vuelto populares entre los químicos, tanto por su belleza estructural como por su versatilidad para la síntesis de nuevos compuestos, ya que se presentan en forma de esferas, elipsoides o cilindros. Los fullerenos esféricos reciben a menudo el nombre de buckyesferas y los cilíndricos el de buckytubos o nanotubos. Reciben este nombre de Buckminster Fuller, que empleó con éxito la cúpula geodésica en la arquitectura.





10.- Metales con efecto memoria
El efecto térmico de memoria es un efecto propio de los materiales llamados inteligentes, como los músculos artificiales y otros materiales, que producen una reacción ante un estímulo dado.

El efecto unidireccional de memoria fue observado por primera vez por Chand y Read en 1951 en una aleación de Oro-Cadmio, y en 1963 Buehler et al. describieron este efecto para nitinol, que es una aleación equiatómica de Níquel-Titanio.

Este efecto en metales y cerámicas está basado en un cambio en la estructura cristalina, llamado transición martensítica de fases. La desventaja de estos materiales es que es una mezcla equitaómica y desviaciones de 1% en la composición modifican la temperatura de transición aproximadamente en 100 K.

No hay comentarios:

Publicar un comentario